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ABSTRACT: The Plant Propagation Algorithm, epitomised by the Strawberry Algorithm, has been previously successfully tested 

on low dimensional continuous Optimization problems. It is a neighbourhood search algorithm. In this paper, we introduce a 

robust and efficient version of the algorithm and explain how it can be implemented to compete with one of the best available 

alternatives, namely the Artificial Bee Colony algorithm and we present an improved and more effective variant on standard 

continuous optimization test problem instances in high dimensions. Computational and comparative results are included. 
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1. INTRODUCTION 

 Although there are already many good algorithms and 
heuristics for Optimization and search problems [23], the 

growing complexity of these problems in practice and the 

frequency with which they occur mean that new and more 

effective algorithms have to be developed. Note that 

frequently occurring problems may justify introducing new 

algorithms with only slight improvements [17, 15, 14, 16]. 

But, designing new algorithms which are easier to implement 

and require fewer arbitrarily set of parameters, for instance, is 

a worthwhile quest in itself. So, there are many reasons for 

trying to invent new algorithms. 

As it happens, a lot of attempts at creating new algorithms 
look to Nature for inspiration. It seems that natural 

phenomena such as the survival of living entities and the 

success of some species in a given environment, rely on 

Optimization and search to overcome the constraints that these 

environments impose on them. The survival of species often 

depends on their ability to adapt, to find food quickly, avoid 

predation and give their off-spring the best chance to survive 

and thrive. These are typically Optimization/search problems. 

  The Plant Propagation Algorithm (PPA) is a Nature-inspired 
algorithm, [24, 3, 21, 18], for Optimization and search.  It 

emulates the way plants, in particular the strawberry plant, 

propagate. Basic PPA has been described and tested on single 

objective Optimization problems [18, 21]. Although the 

problems considered were of low dimensions, it was 

established that the algorithm has merits and deserves further 

investigation and testing on higher dimension instances. The 

attraction of the algorithm is its simplicity and the relatively 

small number of parameters requiring arbitrary setting. 

 This paper addresses the issue of testing the Modified Plant 

Propagation Algorithm (MPPA) on larger, higher       

dimension problems, and compares the algorithm to its basic 

version  

PPA, and two other Nature-inspired ones specifically the 

Artificial Bee Colony (ABC) algorithm [10] and the Modified 

Artificial Bee Colony (MABC) algorithm [2, 5].  The PPA is 

presented both in its original and modified forms. Extensive 

comparative results on high-dimensional test instances are 

reported and discussed. The paper ends with a conclusion and 

further issues for consideration. 

2. THE ARTIFICIAL BEE COLONY ALGORITHM 
 The Artificial Bee Colony algorithm proposed in [10], 

simulates the foraging behaviour of bees living in a colony. 

Three groups of bees participate in the foraging process:  

worker bees, onlooker bees and scout bees. The majority of 

the population is composed of worker bees and onlooker 

bees. The scouts are recruited from worker bees.   Algorithm 

1 below describes the ABC algorithm. 
2.1 THE MODIFIED ARTIFICIAL BEE COLONY 

ALGORITHM  

 The MABC algorithm has been suggested in [5].  The new 

method improves upon the exploitation aspect. MABC uses 

Differential Evolution [13] in step 4 of the ABC algorithm, 

and removes step 5 (or the Scouts phase). MABC has a good 

performance on continuous unconstrained Optimization, it is a 

hybrid algorithm of ABC. It is, at the moment, the 

algorithm to beat among a large selection of benchmark 

functions 

[5]. 

3. THE STRAWBERRY ALGORITHM 
 PPA as the Strawberry algorithm [18, 20, 21], is a neighbour- 

hood search algorithm and a population-based metaheuristic. 

However, it can be seen as a multi-path following algorithm 

unlike Simulated Annealing (SA) [1, 19, 21], for instance, 

which is a single path following algorithm. 

 Exploration and exploitation are the two main properties 

global Optimization algorithms ought to have [24, 23, 3, 22]. 

Exploration refers to the property of covering the whole search 

space, while exploitation refers to the property of searching 

for local optima, near good solutions. Effective global 

Optimization methods exhibit both properties. 

 Consider what a strawberry plant, and possibly any plant 

which propagates through runners, will do to maximise its 

chances of survival.  If it is in a good spot in the ground, 

with enough water, nutrients and light, then it is reasonable 

to assume that there is no pressure on it to leave that spot to 

guarantee its survival.  So, it will send many short runners 

that will give new strawberry plants and occupy the 

neighbourhood as best they can. If, on the other hand, the 

mother plant is in a spot that is poor in water, nutrients, light 

or any element necessary for a plant to survive, then it will 
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try to find a better spot for its off-spring. Therefore, it will 

send a few runners further afield to explore distant 

neighbourhoods. One can also assume that it will send only a 

few, since sending a long runner is a big investment for a 

plant which is in a poor spot.  We may further assume that 

the quality of the spot (abundance of nutrients, water and 

light) is reflected in the growth of the plant. With this in 

mind, and the following notation, PPA can be described as 

follows. 

 A plant pi is in spot Xi in dimension n. This means Xi = 

[xi, j ], for j = 1, ..., n.  In PPA, exploitation is implemented 

through sending of many short runners by plants in good 

spots. Exploration is implemented by sending few long 

runners by plants in poor spots; the long runners allow distant 

neighbourhoods to be explored. 

 The parameters used in PPA are the population size NP 

which is the number of strawberry plants to start with, the 

maximum number o generations gmax, and the maximum 

number of possible runners nmax per plant. gmax is effectively 

the stopping criterion in this initial version of PPA. The 

algorithm uses the objective function value at different plant 

positions Xi , i = 1, ..., NP to rank them as would a fitness 

function in genetic algorithms, [8]. 

 Let Ni ∈ (0, 1) be the normalised objective function value for 

Xi.  The number of plant runners, ni for this solution is given 

by 

 
where αi ∈ (0, 1) is a randomly generated number.  Every 

solution generates at least one runner. Each runner generated 

has a distance, dxi ∈ [−1, 1]
n
 , calculated by 

     
where r ∈ [0, 1] is also randomly generated. We note that the 

number of runners is proportional to the fitness, i.e. the value 

of the objective function, whereas the distance is inversely 

proportional to it. 

 Having calculated the n-dimensional vector dxi , the new point 

to explore, Yi = [yi, j ], for j = 1, ..., n, is given by 

     
where a j and b j are the lower and upper bounds of the search 
domain, respectively. Note that, if the bounds of the search 
domain are violated, the point is adjusted to be within the 
domain.After all individuals/plants in the population have 
sent out their allocated runners, new plants are evaluated and 
the whole increased population is sorted. To keep the 
population size constant, individuals with lower fitness are 
eliminated. 

3 MODIFIED PLANT PROPAGATION ALGORITHM  
(MPPA) 

The modifications with respect to the previous version of PPA 

as in Algorithm 2, [18, 21], concern the strategy for  

generating runners, whether they should be short or long, 

and whether the new points resulting from these runners are 

retained or not. Also, while in Algorithm 2 the number of 

runners is varying between 1 and nmax , in the modified 

version it is assumed to be a fixed number, although all 

generated runners may not lead to points that will make it into 

the new population. This is because, after sorting, their rank 

may be above NP, the population size. 

 

3.1 AN ALTERNATIVE IMPLEMENTATION OF THE    
PROPAGATION PHASE 

The population is initialized randomly by 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where α j ∈ (0, 1) is a randomly generated real number for 
each j.  After the population is initialized, MPPA proceeds to 

generate for every member in the population a number nr of 

runners; nr  is assumed to be a fixed constant. These runners 

lead to new solutions as per the equations (5-7), on the off 

chance that the limits of the search area are maltreated, the 

coordinates are conformed respectively to be inside the search 

space [9]. 

    

where β j ∈ [−1, 1] is a randomly generated number for each j. 
The term β j · xi, j is the length with respect to the j 

j h
 

coordinate of the runner, and yi, j ∈ [a j , b j ].  If the bounds of 

the search domain are violated, the point is adjusted to be 

within the domain. The generated individual Y is evaluated 

according to the objective function and is stored in Φ, 

equation (5) helps in exploring the neighbourhood of xi, j .  As 

the search becomes refined, that is the algorithm is in 

exploitation mode then the coordinates produced by equation 
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(5) are smaller and smaller [9]. This is represented in Figure 

(2), where the horizontal axis shows the total number of 

perturbations produced during 30 independent experiments. 

Note that in beginning of each experiment the step size is 

larger and as the search is refined the step size decreases 

gradually, in the latter case the algorithm is in exploitation 

mode. In Algorithm 3, If this newly created solution, by 

equation (5), is not improving the objective function, then 

another individual is created with a runner based on equation 

(6), [9]. The number of runners of a certain length generated 

by equation (6), when solving f2 , is shown in Figure (1), this 

shows the frequency of exploration for the optimum solution. 

 

 

where b j is the j
t h

 upper bound and here again yi, j ∈ [a j , b j ]. 
This can be considered as a solution at the end of a long 

runner. Again, if the generated individual does not improve 

the 

 

 

 

 

 

 

 

 

 

 
 
objective value, another runner is created by equation (7), 

 

 
 

where a j  is the j
t h  

lower bound and yi, j∈  [a j , b j ].  This 

can be considered as a solution at the end of a long runner.  

The number of runners of a certain length generated by 

equation (7), when solving f2 , is shown in Figure (3), this 

shows the frequency of exploration for the optimum 

solution. 

Equations (5-7), are implemented by Algorithm 3 turn by 

turn if any of the search equation fails in improving the cur- 

rent solution [9].  MPPA improves the balance between 

exploration and exploitation of the search space as depicted 

in Figures (1-3). Note that the above equations may lead to 

infeasibility.  In these situations, the offending entry is set 

by default to the boundary, lower or upper as per the 

concerned equation.  To keep the size of the population 

constant, the plants with ranks > NP after sorting, are 

eliminated. 

4. EXPERIMENTAL STUDIES 

MPPA has been applied to a set of 18 benchmark functions of 
dimensions D = 30, 60 and 100, as shown in Tables 1-3. The 

set of experiments are carried out using n * 5000 function 

evaluations, where n is the dimension of the given test 

problem. The population size is NP = 75, as used in [5]. We 

try to match the number of evaluations carried out in tests in 

[5]. Note that although MPPA generates more points per 

iteration than MABC, it runs for less generations. In this way 

the number of function evaluation is kept the same for both 

algorithms. One, therefore, can talk of a fair comparison 

although some readers may find the concept of "fair 

comparison" hard to achieve in empirical studies on 

algorithms.  The solution quality is listed in terms of best, 

worst, median, mean and standard deviation of the objective 

values found by each algorithm over 30 independent runs, as 

shown in Tables 5-7. 

 For functions 1, 2, 3, 5, 7, through 13, 16, and 17, MPPA 
found the optimum solutions while MABC did not. For 

functions 4 both algorithms found the optimum. For functions 

6, 15, and 18 MPPA generated better solutions in terms of 

quality than MABC, although these solutions are suboptimal. 

Only for function 14 did MPPA generate a solution of lower  

quality than that found by MABC. 

It is also important to note that MPPA outperformed ABC on 
all functions except Function 14, in dimension 30.  Note that, 

at least for the time being,  it is not necessary to compare  with 

other  algorithms  such  as the Genetic Algorithm (GA) [8, 7], 

Particle Swarm Optimization (PSO) [4], Differential 

Evolution (DE) [13], Harmony Search algorithm (HS) [6] and 

others, since all of these have been outperformed  by ABC as 

reported in [11, 12]. MPPA is compared to its basic version 

PPA, as shown in Table 4, the approximate error in solutions, 

points to the superiority of MPPA. 

5 CONCLUSION 
Optimization problems are becoming more and more complex 
and unavoidable in most human activities.  Although a variety 
of algorithms and heuristics to deal with them have been 
developed, new approaches are needed as the size and 
complexity of these problems increase. In recent years, 
heuristics and in particular   those inspired by Nature, are 
becoming more efficient and robust.  We have designed   a 
Nature­ inspired algorithm based on the way plants and in 
particular the strawberry plant, propagate. The original PPA 
algorithm has been only summarily tested on low dimension 
problems to establish its credentials.  Surprisingly, despite 
being very simple and requiring few parameters, it managed to 
solve those problems rather well, [18].  In this paper, we have 
presented a modified version of PPA, which is referred to as 
MPPA. The improvements concern the way new solutions at 
the end of runners are calculated, i.e.  Equations (5-7).  The 
resulting algorithm has been tested on a more extensive test 
bench with a large number of functions having interesting 
characteristics such as multimodality and non separability in 
high dimensions, up to a 100. The results show that MPPA 
outperforms ABC and its more robust modification MABC on 
most of the test functions.  In conclusion, MPPA provides us 
with a robust, easy to implement method for nonlinear, non-
convex high dimensional optimization problems. 
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