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ABSTRACT: The Plant Propagation Algorithm, epitomised by the Strawberry Algorithm, has been previously successfully tested
on low dimensional continuous Optimization problems. It is a neighbourhood search algorithm. In this paper, we introduce a
robust and efficient version of the algorithm and explain how it can be implemented to compete with one of the best available
alternatives, namely the Artificial Bee Colony algorithm and we present an improved and more effective variant on standard
continuous optimization test problem instances in high dimensions. Computational and comparative results are included.
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1. INTRODUCTION

Although there are already many good algorithms and
heuristics for Optimization and search problems [23], the
growing complexity of these problems in practice and the
frequency with which they occur mean that new and more
effective algorithms have to be developed. Note that
frequently occurring problems may justify introducing new
algorithms with only slight improvements [17, 15, 14, 16].
But, designing new algorithms which are easier to implement
and require fewer arbitrarily set of parameters, for instance, is
a worthwhile quest in itself. So, there are many reasons for
trying to invent new algorithms.
As it happens, a lot of attempts at creating new algorithms
look to Nature for inspiration. It seems that natural
phenomena such as the survival of living entities and the
success of some species in a given environment, rely on
Optimization and search to overcome the constraints that these
environments impose on them. The survival of species often
depends on their ability to adapt, to find food quickly, avoid
predation and give their off-spring the best chance to survive
and thrive. These are typically Optimization/search problems.
The Plant Propagation Algorithm (PPA) is a Nature-inspired
algorithm, [24, 3, 21, 18], for Optimization and search. It
emulates the way plants, in particular the strawberry plant,
propagate. Basic PPA has been described and tested on single
objective Optimization problems [18, 21]. Although the
problems considered were of low dimensions, it was
established that the algorithm has merits and deserves further
investigation and testing on higher dimension instances. The
attraction of the algorithm is its simplicity and the relatively
small number of parameters requiring arbitrary setting.

This paper addresses the issue of testing the Modified Plant
Propagation  Algorithm  (MPPA) on larger, higher
dimension problems, and compares the algorithm to its basic
version

PPA, and two other Nature-inspired ones specifically the
Artificial Bee Colony (ABC) algorithm [10] and the Modified
Artificial Bee Colony (MABC) algorithm [2, 5]. The PPA is
presented both in its original and modified forms. Extensive
comparative results on high-dimensional test instances are
reported and discussed. The paper ends with a conclusion and
further issues for consideration.

2. THE ARTIFICIAL BEE COLONY ALGORITHM
The Artificial Bee Colony algorithm proposed in [10],
simulates the foraging behaviour of bees living in a colony.
Three groups of bees participate in the foraging process:
worker bees, onlooker bees and scout bees. The majority of
the population is composed of worker bees and onlooker
bees. The scouts are recruited from worker bees. Algorithm
1 below describes the ABC algorithm.

2.1 THE MODIFIED ARTIFICIAL BEE COLONY
ALGORITHM
The MABC algorithm has been suggested in [5]. The new
method improves upon the exploitation aspect. MABC uses
Differential Evolution [13] in step 4 of the ABC algorithm,
and removes step 5 (or the Scouts phase). MABC has a good
performance on continuous unconstrained Optimization, it is a
hybrid algorithm of ABC. It is, at the moment, the
algorithm to beat among a large selection of benchmark
functions
[5].
3. THE STRAWBERRY ALGORITHM
PPA as the Strawberry algorithm [18, 20, 21], is a neighbour-
hood search algorithm and a population-based metaheuristic.
However, it can be seen as a multi-path following algorithm
unlike Simulated Annealing (SA) [1, 19, 21], for instance,
which is a single path following algorithm.
Exploration and exploitation are the two main properties
global Optimization algorithms ought to have [24, 23, 3, 22].
Exploration refers to the property of covering the whole search
space, while exploitation refers to the property of searching
for local optima, near good solutions. Effective global
Optimization methods exhibit both properties.
Consider what a strawberry plant, and possibly any plant
which propagates through runners, will do to maximise its
chances of survival. If it is in a good spot in the ground,
with enough water, nutrients and light, then it is reasonable
to assume that there is no pressure on it to leave that spot to
guarantee its survival. So, it will send many short runners
that will give new strawberry plants and occupy the
neighbourhood as best they can. If, on the other hand, the
mother plant is in a spot that is poor in water, nutrients, light
or any element necessary for a plant to survive, then it will
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try to find a better spot for its off-spring. Therefore, it will
send a few runners further afield to explore distant
neighbourhoods. One can also assume that it will send only a
few, since sending a long runner is a big investment for a
plant which is in a poor spot. We may further assume that
the quality of the spot (abundance of nutrients, water and
light) is reflected in the growth of the plant. With this in

mind, and the following notation, PPA can be described as

follows.

A plant pj is in spot X; in dimension n. This means X; =
[xi,j], for j = 1,.., n. In PPA, exploitation is implemented
through sending of many short runners by plants in good
spots. Exploration is implemented by sending few long

runners by plants in poor spots; the long runners allow distant

neighbourhoods to be explored.

The parameters used in PPA are the population size NP
which is the number of strawberry plants to start with, the
maximum number o generations gma, and the maximum

number of possible runners nya per plant. gnay is effectively

the stopping criterion in this initial version of PPA. The
algorithm uses the objective function value at different plant
positions X; , i = 1, ..., NP to rank them as would a fitness
function in genetic algorithms, [8].

Let N; € (0, 1) be the normalised objective function value for
Xi. The number of plant runners, n; for this solution is given

by
nt = [npaNioy] . (1)
where o; € (0, 1) is a randomly generated number.
solution generates at least one runner. Each runner generated
has a distance, dx; €[—1, 1]", calculated by
dx}z?{]—N,-)(r—O.S). for j=1,...,n, (2)

where r € [0, 1] is also randomly generated. We note that the
number of runners is proportional to the fitness, i.e. the value

of the objective function, whereas the distance is inversely

proportional to it.

Having calculated the n-dimensional vector dx; , the new point

to explore, Y; = [y; ;], for j=1, ..., n, is given by
Vij=Xij+(bj—aj)dx;, for j=1,..., n, (3)
where a j and b j are the lower and upper bounds of the search
domain, respectively. Note that, if the bounds of the search
domain are violated, the point is adjusted to be within the
domain.After all individuals/plants in the population have
sent out their allocated runners, new plants are evaluated and
the whole increased population is sorted. To keep the
population size constant, individuals with lower fitness are
eliminated.
3 MODIFIED PLANT PROPAGATION ALGORITHM
(MPPA)
The modifications with respect to the previous version of PPA
as in Algorithm 2, [18, 21], concern the strategy for
generating runners, whether they should be short or long,
and whether the new points resulting from these runners are
retained or not. Also, while in Algorithm 2 the number of
runners is varying between 1 and npay, in the modified
version it is assumed to be a fixed number, although all
generated runners may not lead to points that will make it into
the new population. This is because, after sorting, their rank
may be above NP, the population size.
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3.1 AN ALTERNATIVE IMPLEMENTATION OF THE
PROPAGATION PHASE
The population is initialized randomly by

xij=aj+(bj—aj)a;. j=1,..n, (4)

Algorithm 1 : Artificial Bee Colony (ABC) algorithm, [10]

I: Generate random food sources for all worker bees:

2: while Stopping criterion is not satisfied do

3 Each worker bee goes to its assigned food source,
finds a neighbouring source, evaluates it and
displays the information to onlooker bees in the hive,

through a dance:
4: Each onlooker bee, after watching worker bees

dancing. selects one of the sources and goes to it.
[t then finds a neighbouring source and evaluates it.
3 Food sources that are not good are abandoned and

replaced by new ones discovered by worker bees that
have become scouts.

6: Record the best food source found so far.

7: end while

8: return Best solution

Algorithm 2 : Plant Propagation Algorithm (PPA), [18]
1. Generate a random population P = {X;| ,i=1,....NP};

2: while Stopping criterion is not satisfied do

3 Compute N; = Nomalized(f(X;)),V X; € P,N; € (0,1);

4 Sort P in ascending order of fitness values N; (for mini-

mization):

5 Create new population &;

6 foreach X;.i=1..... NP do

7 ri < Generate set of runners where both the size of the
set and the distance for each runner (individually) are
proportional to the fitness values N;;

8: P + P Ur; {append the set of runners to population: }

9: end for

10; P < @ {new population};
1 Rank the population P and omit the individuals having

higher rank than NP
12: end while

13: return Best solution

where o j € (0, 1) is a randomly generated real number for
each j. After the population is initialized, MPPA proceeds to
generate for every member in the population a number nr of
runners; nr is assumed to be a fixed constant. These runners
lead to new solutions as per the equations (5-7), on the off
chance that the limits of the search area are maltreated, the
coordinates are conformed respectively to be inside the search
space [9].

Vij =Xij +,Bj_k';.j. j=1,..., n. (5)
where B j € [1, 1] is a randomly generated number for each j.
The term B j - X; j is the length with respect to the j ! n
coordinate of the runner, and y; ;€ [a;, b;]. If the bounds of
the search domain are violated, the point is adjusted to be
within the domain. The generated individual Y is evaluated
according to the objective function and is stored in @,
equation (5) helps in exploring the neighbourhood of x; ;. As
the search becomes refined, that is the algorithm is in
exploitation mode then the coordinates produced by equation



Sci.Int.(Lahore),28(1),201-209,2016
(5) are smaller and smaller [9]. This is represented in Figure
(2), where the horizontal axis shows the total number of
perturbations produced during 30 independent experiments.
Note that in beginning of each experiment the step size is
larger and as the search is refined the step size decreases
gradually, in the latter case the algorithm is in exploitation
mode. In Algorithm 3, If this newly created solution, by
equation (5), is not improving the objective function, then
another individual is created with a runner based on equation
(6), [9]. The number of runners of a certain length generated
by equation (6), when solving f, , is shown in Figure (1), this
shows the frequency of exploration for the optimum solution.

Vij=Xij+Bibj. j=1..... n, (6)

where b j is the j'"™ upper bound and here again yij€la;,bjl
This can be considered as a solution at the end of a long
runner. Again, if the generated individual does not improve
the
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Figurs 1. Performance of equation (3} in selving fr

objective value, another runner is created by equation (7),
vij=xij+Bjaj. j=1...., n, (7)

where a ; is the j'" lower bound and y; j€ [a;, b;]. This
can be considered as a solution at the end of a long runner.
The number of runners of a certain length generated by
equation (7), when solving f, , is shown in Figure (3), this
shows the frequency of exploration for the optimum
solution.
Equations (5-7), are implemented by Algorithm 3 turn by
turn if any of the search equation fails in improving the cur-
rent solution [9]. MPPA improves the balance between
exploration and exploitation of the search space as depicted
in Figures (1-3). Note that the above equations may lead to
infeasibility. In these situations, the offending entry is set
by default to the boundary, lower or upper as per the
concerned equation. To keep the size of the population
constant, the plants with ranks > NP after sorting, are
eliminated.
4. EXPERIMENTAL STUDIES
MPPA has been applied to a set of 18 benchmark functions of
dimensions D = 30, 60 and 100, as shown in Tables 1-3. The
set of experiments are carried out using n * 5000 function
evaluations, where n is the dimension of the given test
problem. The population size is NP = 75, as used in [5]. We
try to match the number of evaluations carried out in tests in
[5]. Note that although MPPA generates more points per
iteration than MABC, it runs for less generations. In this way
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the number of function evaluation is kept the same for both
algorithms. One, therefore, can talk of a fair comparison
although some readers may find the concept of "fair
comparison” hard to achieve in empirical studies on
algorithms. The solution quality is listed in terms of best,
worst, median, mean and standard deviation of the objective
values found by each algorithm over 30 independent runs, as
shown in Tables 5-7.

For functions 1, 2, 3, 5, 7, through 13, 16, and 17, MPPA
found the optimum solutions while MABC did not. For
functions 4 both algorithms found the optimum. For functions
6, 15, and 18 MPPA generated better solutions in terms of
quality than MABC, although these solutions are suboptimal.
Only for function 14 did MPPA generate a solution of lower

quality than that found by MABC.

It is also important to note that MPPA outperformed ABC on
all functions except Function 14, in dimension 30. Note that,
at least for the time being, it is not necessary to compare with
other algorithms such as the Genetic Algorithm (GA) [8, 7],
Particle Swarm Optimization (PSO) [4], Differential
Evolution (DE) [13], Harmony Search algorithm (HS) [6] and
others, since all of these have been outperformed by ABC as
reported in [11, 12]. MPPA is compared to its basic version
PPA, as shown in Table 4, the approximate error in solutions,
points to the superiority of MPPA.

5 CONCLUSION

Optimization problems are becoming more and more complex
and unavoidable in most human activities. Although a variety
of algorithms and heuristics to deal with them have been
developed, new approaches are needed as the size and
complexity of these problems increase. In recent years,
heuristics and in particular  those inspired by Nature, are
becoming more efficient and robust. We have designed a
Nature- inspired algorithm based on the way plants and in
particular the strawberry plant, propagate. The original PPA
algorithm has been only summarily tested on low dimension
problems to establish its credentials. Surprisingly, despite
being very simple and requiring few parameters, it managed to
solve those problems rather well, [18]. In this paper, we have
presented a modified version of PPA, which is referred to as
MPPA. The improvements concern the way new solutions at
the end of runners are calculated, i.e. Equations (5-7). The
resulting algorithm has been tested on a more extensive test
bench with a large number of functions having interesting
characteristics such as multimodality and non separability in
high dimensions, up to a 100. The results show that MPPA
outperforms ABC and its more robust modification MABC on
most of the test functions. In conclusion, MPPA provides us
with a robust, easy to implement method for nonlinear, non-
convex high dimensional optimization problems.
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Algorithm 3 :

(MPPA)

Modified Plant Propagation Algorithm

I:

R I ]

14:
15
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I7:

18:
1o
20
21
2
23
24

25

26 end while

Create a random population of plants

pop=1{X;|i=12,..,

Evaluate the population,
Assume a fixed number of runners as n, = 3,
while The stopping criteria is not reached do
Create &:
for all plants i = 1 to NP do

D; =X,
for k =1ton, do
Generate a new solution ¥ according to

equation (5);
Evaluate it and store it in &;
Calculate diff =| f(¥) | — | f
if diff= 0 then
Generate a new solution Y according
to equation (6);

Evaluate it and store it in &;
Compute dif f =| f(¥Y) | —

if diff>0 then

NP}, f + Objective function ,
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(Xp) |:

fIXi) |

Generate a new runner using
equation (7); )
Evaluate it and store it in &;

end if

end if
end for

end for

Evaluate and append & to current population pop:;

Sort the population in ascending order of the objective

values and omit the plants with rank>> NP;

Update current best:

27: return Best soulution

0
-100 -50 0 50 100
Search limits

Figure 2. Performance of equation (&) in solving f,

Table 1. Unimuodal (1) and Separable (3) Test functions

Ftn No. Range Dim Function Formulation Min
1 [-100, 100]  [30.60.100] Sphere flx)=Y" x? 0
2 [-100, 100]  [30,60.100] Elliptic flx)=YL (106)% e 0
3 [-10, 10] [30,60.100]  Axis Parallel Hyperellipsoid ~ f(x) :);" ;| D) 0
4 [-100, 100]  [30.60.100] Step fl) =Y ([x+0.5])? 0
5 [-1.28.1.28] [30.60,100] De Jong’s 4 (no noise) flx)y=Yy" 1”4 0
6 [-1.28, 1.28] [30,60,100] Quartic (noise) flx)=Y5 ix; +fcm(10m[0 1) 0
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Table 2. Unimodal (L) 2nd Non-separable () Test fimetions

Ftn No.  Range Dim Function Formulation Min

7 [-10, 10] [30,60.100]  Sum of Different Powers  f(x) =3}, L\‘% 0

8 [-10, 10] [30,60,100]  Schwefel’s Problem 2.22  f(x)=3Y" | |x;| +TT" |xi 0

9 [-100, 100] [30,60,100] Schwefel’s Problem 2.21  f(x) = maxi{|x;|[, 1 <i<n} 0

10 [-10, 10] [30.60,100] Rosenbrock Fx) =T 100(xay —x7)2 + (= 1)) 0

Table 3. Multimodal (), Separable (8} MNon-separable (M) Test fimetions
Ftn No. Range D Type Function Formulation Min
11 [-5.12,5.12]  [30,60,100]  MS Rastrigin fx) =[x} — 10cos(27x;) + 10] 0
12 [5.12,5.12]  [30,60,100] M Non-Continuous  f(x) = [y? — I(}ms("ﬂ:\,) +10] 0
.. Xi x| < 3
13 [-600,600]  [30,60,100] MN  Griewank flx) = = T0 xF —Hf’ rcos() +1 0
14 [-500, 500] [30,60,100] MS Schwefel flx)= IS 98288727243369+n — Y1 x; sin( \ﬁ) 0
15 [-32.32] [30.60,100]  MN  Ackeley’s Path  f(x) = —20exp(—0.2,/ L ¥ | :2) —exp(L ¥% | cos(2mx;)) +204¢ 0
16 [-10, 10] [30,60,100] M Alpine fx)=¥5,|x- Slll(t,)+() 1-x; | 0
17 [-0.5,0.5] [30,60,100] M Weierstrass flx) = Yo, (Eimax gk cos (27 (x; +0.5))])
—DYfmar (gt cos(2mb* (0.5)],a = 0.5,b = 3, kyar = 20. 0

8 [-100, 100]  [30.60,100] MN  Schaffer s (B ) 03 0

f [‘) =05+ (140001 EJJ 1,(7”2

Table 4. Summary of Fezults Obtained with the PPA [18] and MPPA MMethods. Experiments were Fepeated 10 Times for
Each Problem and Solutions Obtained were Compared with PPA [18]. 2 and b are the Lower and Upper Bounds on 3, the

Diecizion variahles.

Function Range Dim PPA MPPA True value Errorppy Errorypps
Six hump camel back [-3,2] 2 -1.0316 -1.0316 -1.0316 0 0
Branin [-5, 15] 2 0.3980 0.3980 0.397887 1.13e-04 1.13e-04
Easom [-100, 100] 2 -0.9997 -0.9997 -1 3.0e-04 3.0e-04
Goldstein Price [-2,2] 2 3.00536 3 3 5.36e-03 0
Martin Gaddy [-20, 20] 2 4.4749¢-08 0 0 4.4749¢-08 0
Rastrigin [-10, 10] 2 9.2¢-03 0 0 9.2e-03 0
Rosenbrock [-5.10] 2 2.0e-04 0 0 2.0e-04 0
Schwefel [-500, 500] 2 -833.203 -837.9603 -837.9658 476 5.5¢-03
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Table 3. Besnlts Obtained by MPPA, ABC and BMABC on test fimctions of Table 1.

Fun Dim  Algorithm Bast Worst Median Maan 5D
1 30 ABC 202-10 107e-0% 202e-10 32le-10 2462-10
MABC 169 -32  248e -3l L.B0e-32 G943 -3  6.67e-32

MFPA O 1] 0 ] ]
6l ABC 34%-10 32e-09% 327e-09 10%-09 O937e-10
MABC 92% -30 1.5%e-28 4682-29 A03e-20 43le-29

MPFPA O 1] 0 ] ]
100 ABC 38e-10 3lle-0% 387e-10 164e-09 0835 -10
MABC  463e-28 263e-27 |.B6e - 27 l43%-27  B122-28

MPFPA O 1] 0 ] ]
2 30 ABC 265%-07 132e-05 77le-07 410e-06 3.85% -06
MABC 255 -29  1.9%e-27 1.9%e-27 3662 -28 5962 - 28

MPFPA O 1] 0 ] 0
(=1 ABC 214e-07 625 -06 453e-06 23le-06 2182-06
MABC 365e-26 B6%-25 363e-26 350e-23 27%e-25

MPFPA O 1] 0 ] 0
100 ABC  400e-07 646e-06 137e-06 17%-06 L63e2-06
MABC  3.17e-24 373e-24 317e-24 352 - 247e-25

MPFPA O 1] 0 ] 0
3 30 ABC  9032-12 4.62e-11 L.362-11 222 -11 Ll4e - 11
MABC  357e-33 528e-32 462e-33  210e-31  156e-32

MPFPA O 1] 0 ] 0
(1] ABC 793 -11  317e-10 317e-10  18%-10 S.142-11
MABC  56le-30 320e-29 624e-30  13%-20  B&d4e-30

MPFPA O 1] 0 ] 0
100 ABC  2EZe- 10 285 -09 42le-10 125 -09 975%-10
MABC 150e-28 B74e-28 1.72¢ - 28  4462-28 208 -28

MFPA O o 0 ] 0

4 30 ABC O 1] 0 ] ]

MABC 0O 1] 0 ] 0

MFPA O o 0 ] 0

(1] ABC O 1] 0 ] ]

MABC 0O 1] 0 ] 0

MPFPA O 1] 0 ] ]

100 ABC O 1] 0 ] ]

MABC 0O 1] 0 ] 0

MPFPA O 1] 0 ] ]
5 30 ABC  1.26e-29  LBbe-28 L6de-29  55le-29 6.70e-29
MABC BEQe-69 597e-67 L.0le-68 143 -67 2128 -67

MFPA O 1] 0 ] ]
6l ABC  490e-28 200e-26 4590e-28 653-27 T23e-I7
MABC 44%-64 237e-61 2372-61 500e-62 038 -62

MFPA O 1] 0 ] ]
100 ABC 13le-26 l4le-25 L.3de-26 5652 -26  4.90e-26
MABC  3.9% -6l 1.56e-59 30%-61 572-60 332-60

MFPA O 1] 0 ] ]
6 30 ABC 603e-02 12e-01 7.67e-02 B74e-02 L7e-02

MARBC 842 -02 4582-02 4482-02 37le-02 853%-03
MPPA 198 -06  5462-05 l.4le-05 178 - 05 1.3% - 05

&0 ABC 1L.87e - 01 2.65 - 01 2.43e-01 23% -0 2.86e -02
MABC  9.20e-02 1.33e - 01 1.21e- 01 L.14e - 01 Ll6e -02
MPFPA 278 - 08 .54 -05 425 -06 312-00 425 -00
100 ABC 3962 -01 4.92e - 01 470e-01 455 -0] 3.20e -02

MABC L.ada - 01 2.56a -01 2562 - 01 13le-01 17% -02
MPPA  757e-08 24de-05 328e-06 32Be-00  5.80e-0o0
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Table 6. Fesults Obtained by MPPA, ABC and MABC on test fimctions of Table 2.
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Fun  Dm  Algorithm Best Worst Median Mean SD
7 30 ABC .34e - 18 4.2% - 16 1.82e - 16 1.45 - 16 1.55e- 16
MARBC .26z - 74 134 - 68 T.02e-T1 2.70e - 69 5.382 - 69

MPPA O 1] ] 1] ]
6l ABC  48Re-11 7.62a - 10 4882 - 11 214e - 10 275e- 10
MABC  5.l6e-65 9.54e - 62 3.5% - o4 3.00e - 62 38Te-a62

MPPA O 1] ] 1] ]
[0 ABC  252e-08 2.05e - 06 6.75 - 08 4.83e-07 1.88e-07
MABC  7.76e- 52 B.74e - 48 B.0le- 52 1.92e - 48 342e-48

MFPPA 0 L 0 L 0
B 30 ARC 1.28a - 06 2.63e - 06 1.28e - 06 1.83e - 06 4.80a - 07
MABC B4le- 18 4.092 - 17 B4le- 18 2402 - 17 9.02e- 18

MPPA O 1] ] 1] ]
6l ABC  577e-06 9.2% - 06 6.81e- 06 7.23e - 06 1.28e - 06
MABC  530e- 16 8.72e - 16 833e- 16 6.96e - 16 1.20e - 16

MPPA O 1] ] 1] ]
L (i ARC 1.28a - 06 1.5% - 05 .28 - 05 1.30e - 05 .93 - 06
MABC  2082- 15 G.63a - 13 6.46e - 15 44le-15 .30 - 15

MPPA O 1] ] 1] ]
9 30 ABC 1. 302 + 01 2002 + 01 1.52e + 01 1.80e + 01 235 - 00
MABC  9.16z-00 1.42e + 01 I.26e + 01 1.02e + 01 .49 - 00

MFPPA 0 L 0 L 0
6l ABC  37% +101 4.652 + 01 4,182 + 01 422 + 01 2732 -00
MABC 2922+ 01 4.03e + 01 3802 + 01 3Te + 01 3 14e-00

MFPPA 0 L 0 L 0
[0 ABC  530e+ 01 G042 + 01 5.30e + 01 5.76e + 01 2742 -00
MABC 5702+ 01 6.232 + 01 .76+ 01 598 + 01 1.60e - 00
10 0 ABC 212e-02 2.20e - 00 5.56a-01 4.23e-01 4.3He-01
MABC  4.0%9z-02 1.95¢ - 00 23e-01 G011 - 01 4.352-01
MFPPA 0 B.24e - 03 1.42e - 05 4240 -4 1.60e - 03
6l ARC |.B8a - 01 5.75 - 00 1. 80e - 00 1.B6e - 00 1.36e - 00
MABC 217e-01 5.26a - 00 1.30e - 00 I.50e - 00 1.34e - 00
MPPA O 2.13e - 03 4.02e - 05 1.B3e - 04 5,08 - 04
L (i ABC  548e-01 3942 - 00 6.332-01 1.5% - 00 .23 - 00
MARBC 513 -01 1. Tle - 00 6.71e-01 1.98e - 00 1.30e - 00
MPPA O 1.22e - 03 [L.82e -4 352 -4 J8le-04
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Table 7. Besults Obtained by RMPPA ABC and MMABC on test fimctions of Table 3.

Fun Dim Algorithm Best Worst Median Mean S0
11 30 ABC 358e - 10 .46z - 01 5.50e - 10 4.8le -03 257e-02
MABC L] 0 (1] 0 0
MFPPA o 0 1] L o
60 ABC 32le- 10 1.9%e - 00 1.28e - 05 371e -01 5.97e - 01
MABC L] 0 0 0 0
MFPA L] 0 (1] 0 0
100 ABC 5.40e - 09 1.9%a - 00 1.99 - (M L 10e - 00 2 2le-01
MABC L] 0 0 L o
MPPA L] 0 (1] 0 0
12 30 ABC 8.96e - 10 1.0 - DD 1.77e - 08 L12e -0l 287e-01
MABC L] 0 (1] 0 0
MFPA L] 0 0 L o
a0 ABC 2.17e - 07 3.025e - 00 1.0 - O L4T7e - 5.47e - 01
MABC L] 0 (1] 0 0
MFPA L] 0 (1] 0 0
100 ABC 2.00e - 00 T.2le - 00 5.02e - M 4748 - Z.00e - 00
MABC L] 0 0 0 0
MPPA L] 0 (1] 0 0
13 30 ABC A T4 - 12 1.35a - O7 1.77e - 08 Lale - D8 3.99e - 08
MABC L] 0 0 L o
MPPA L] 0 0 0 0
o0 ABC 799 - 12 1.03e - 09 145 - 11 1.3% - 10 3.10e - 10
MABC L] 0 (1] 0 0
MFPPA o 0 1] L o
10} ABC 628 - 13 3.05e - 08 1.0le - 10 201e - 09 1.32e - 09
MABC L] 0 (1] 0 0
MFPA L] 0 (1] 0 0
14 30 ABC 1. 542 - 06 237e 4+ 02 3.T6e - 01 B.EGe + 01 B.62e + 01
MABC - LEle - 12 0 0 - 1.21le- 13 453 -13
MPPA 3BZ2e - 04 3.55e+03 536z - 04 3552 +02 1.08e + 03
o0 ABC 355 + 02 T.6592 + 02 769 02 S.40e + 02 1.4le +02
MABC 291e - 11 J63e- 11 29]e - 11 3562 - 11 2 18e- 12
MPPA T.63e - 04 7. 10e +03 709 -4 T 10e - 02 2. lae 403
10} ABC TEle +02 1.55e + 03 1.51e = 03 1.2%e + 03 2232+ 02
MABC 1.0%e - 10 1.23e - 10 1. 16 - 10 L1%e - 10 4.00e- 12
MFPPA 1.27e - 03 1. 182 +04 1.30e -03 T.E%e +02 3.00e +03
15 30 ABC 216 - 06 B3le- 06 T.17e - 06 4.83e - D6 2. 12e - 06
MABC Jade - 14 4.35e - 14 399z - 14 4 13- 14 217e-15
MFPA B.BBe - 1o B.EEe - 16 B.BEe - 16 B.BEe - 16 0
60 ABC 2448 - 06 1.57e - 05 244 - 06 T.7%e - D6 3.a3e - 06
MABC .14 - 13 1.57e - 13 1.32e - 13 L.37e - 13 1.242 - 14
MPPA B.EBe - lo BEEe- 16 2.BEe - 16 B.B8e - 16 0
10} ABC 5.12e - 0o 1.38e - 05 5.94e - 06 L02e - 05 2.892e-06
MABC 32Te - 13 3982 - 13 3Xe - 13 3562 - 13 2 29e - 14
MFPPA B.EEe - 16 B HEe - 16 2.BEe - 16 B.EBe - 16 o
1& 30 ABC 29% - 05 .05 - 04 1.05e - 04 7662 - 05 276e-05
MABC 3iT4e- 18 6.54e - 16 1.48e - 17 1L.58e - 16 2.48e- 16
MFPA L] 0 (1] 0 0
60 ABC 218 -04 1.24a - 03 325 - 04 578e - 04 3.51e - 04
MABC 255 - 16 1.90e - 15 445 - 16 B.20e - 16 469 - 16
MPPA L] 0 (1] 0 0
10} ABC T.13e - 04 1.27e - 02 T3 -4 7.62e - 03 5. 10e-03
MABC 238e - 15 Q.68 - 15 T.76e - 15 583e-15 1.97e - 15
MPPA L] 0 0 0 0
17 30 ABC 1.38z - 01 I.62e - 01 1.39 - 01 L46e - 0l 1.0%e - 02
MABC 1] 0 i L o
MFPPA L] 0 0 L o
a0 ABC 1.E7e - 01 35le-01 293 - 01 277e - 01 6772 -02
MABC L] 1.42e - 14 T.00e - 15 9.94s - 15 5.682- 15
MFPA L] 0 (1] 0 0
100 ABC 6662 - 00 T.48e - 00 T.262 - (M T.07e - 4082 - 00
MABC 4262 - 14 5.682 - 14 4.262 - 14 52le- 14 Goa%e - 15
MPPA L] 0 (1] 0 0
18 30 ABC 4.147e - 01 4.598e - 01 4524 - 01 44132 - 01 1.8le-02
MABC 227T7e - 01 3.455e-01 3.121e - 01 2952 - 01 3. 17e - 02
MPPA 3 lde - 03 9.57e-02 336z - 02 3Ele-02 2.65e-02
a0 ABC 4960z - 01 4.976e - 01 4974 - 01 497 1e - 01 5.90e - 04
MABC 4796 - 01 4,903 - 01 4.850e - 01 4. 8402 - 01 3.62e-03
MFPPA Q2% - 03 1.98a - 01 5 13 - 02 GEde - 02 4T7le - 02
10} ABC 49962 - 01 4,908 - 01 4998 - 01 49972 - 01 4.5le-05
MABC 4988 - 01 4,902 - 01 4.991e - 01 4,900z - 01 1.75e - 04

MPPA L] 1.77e - 01 T.B5e - 02 B.7%e - 02 5.33e - 02
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