
Jan-Feb

 Sci.Int.(Lahore),28(1),201-209,2016 ISSN 1013-5316; CODEN: SINTE 8 201

A NOVEL PLANT PROPAGATION ALGORITHM: MODIFICATIONS AND
IMPLEMENTATION

Muhammad Sulaiman
1
, Abdel Salhi

2
, Eric S Fraga

3
, Wali Khan Mashwani

4
, Muhammad M Rashidi

5

1Department of Mathematics, Abdul Wali Khan University, Mardan, KPK, Pakistan
2Department of Mathematical Sciences, University of Essex, Colchester, UK

 3Centre for Process Systems Engineering, Department of Chemical Engineering, University College London (UCL), UK

4
Department of Mathematics, Kohat University of Science & Technology (KUST), Pakistan.

5Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University, 4800 Cao An Rd., Jiading,
Shanghai 201804, China

E-mail: sulaiman513@yahoo.co.uk, mashwanigr8@gmail.com

ABSTRACT: The Plant Propagation Algorithm, epitomised by the Strawberry Algorithm, has been previously successfully tested

on low dimensional continuous Optimization problems. It is a neighbourhood search algorithm. In this paper, we introduce a

robust and efficient version of the algorithm and explain how it can be implemented to compete with one of the best available

alternatives, namely the Artificial Bee Colony algorithm and we present an improved and more effective variant on standard

continuous optimization test problem instances in high dimensions. Computational and comparative results are included.

Keywords: Optimization; Heuristics; Nature-Inspired Algorithms; Artificial Bee Colony Algorithm; Strawberry/Plant Propagation Algorithm

1. INTRODUCTION

 Although there are already many good algorithms and
heuristics for Optimization and search problems [23], the

growing complexity of these problems in practice and the

frequency with which they occur mean that new and more

effective algorithms have to be developed. Note that

frequently occurring problems may justify introducing new

algorithms with only slight improvements [17, 15, 14, 16].

But, designing new algorithms which are easier to implement

and require fewer arbitrarily set of parameters, for instance, is

a worthwhile quest in itself. So, there are many reasons for

trying to invent new algorithms.

As it happens, a lot of attempts at creating new algorithms
look to Nature for inspiration. It seems that natural

phenomena such as the survival of living entities and the

success of some species in a given environment, rely on

Optimization and search to overcome the constraints that these

environments impose on them. The survival of species often

depends on their ability to adapt, to find food quickly, avoid

predation and give their off-spring the best chance to survive

and thrive. These are typically Optimization/search problems.

 The Plant Propagation Algorithm (PPA) is a Nature-inspired
algorithm, [24, 3, 21, 18], for Optimization and search. It

emulates the way plants, in particular the strawberry plant,

propagate. Basic PPA has been described and tested on single

objective Optimization problems [18, 21]. Although the

problems considered were of low dimensions, it was

established that the algorithm has merits and deserves further

investigation and testing on higher dimension instances. The

attraction of the algorithm is its simplicity and the relatively

small number of parameters requiring arbitrary setting.

 This paper addresses the issue of testing the Modified Plant

Propagation Algorithm (MPPA) on larger, higher

dimension problems, and compares the algorithm to its basic

version

PPA, and two other Nature-inspired ones specifically the

Artificial Bee Colony (ABC) algorithm [10] and the Modified

Artificial Bee Colony (MABC) algorithm [2, 5]. The PPA is

presented both in its original and modified forms. Extensive

comparative results on high-dimensional test instances are

reported and discussed. The paper ends with a conclusion and

further issues for consideration.

2. THE ARTIFICIAL BEE COLONY ALGORITHM
 The Artificial Bee Colony algorithm proposed in [10],

simulates the foraging behaviour of bees living in a colony.

Three groups of bees participate in the foraging process:

worker bees, onlooker bees and scout bees. The majority of

the population is composed of worker bees and onlooker

bees. The scouts are recruited from worker bees. Algorithm

1 below describes the ABC algorithm.
2.1 THE MODIFIED ARTIFICIAL BEE COLONY

ALGORITHM

 The MABC algorithm has been suggested in [5]. The new

method improves upon the exploitation aspect. MABC uses

Differential Evolution [13] in step 4 of the ABC algorithm,

and removes step 5 (or the Scouts phase). MABC has a good

performance on continuous unconstrained Optimization, it is a

hybrid algorithm of ABC. It is, at the moment, the

algorithm to beat among a large selection of benchmark

functions

[5].

3. THE STRAWBERRY ALGORITHM
 PPA as the Strawberry algorithm [18, 20, 21], is a neighbour-

hood search algorithm and a population-based metaheuristic.

However, it can be seen as a multi-path following algorithm

unlike Simulated Annealing (SA) [1, 19, 21], for instance,

which is a single path following algorithm.

 Exploration and exploitation are the two main properties

global Optimization algorithms ought to have [24, 23, 3, 22].

Exploration refers to the property of covering the whole search

space, while exploitation refers to the property of searching

for local optima, near good solutions. Effective global

Optimization methods exhibit both properties.

 Consider what a strawberry plant, and possibly any plant

which propagates through runners, will do to maximise its

chances of survival. If it is in a good spot in the ground,

with enough water, nutrients and light, then it is reasonable

to assume that there is no pressure on it to leave that spot to

guarantee its survival. So, it will send many short runners

that will give new strawberry plants and occupy the

neighbourhood as best they can. If, on the other hand, the

mother plant is in a spot that is poor in water, nutrients, light

or any element necessary for a plant to survive, then it will

mailto:sulaiman513@yahoo.co.uk
mailto:mashwanigr8@gmail.com

202 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(1),201-209,2016

try to find a better spot for its off-spring. Therefore, it will

send a few runners further afield to explore distant

neighbourhoods. One can also assume that it will send only a

few, since sending a long runner is a big investment for a

plant which is in a poor spot. We may further assume that

the quality of the spot (abundance of nutrients, water and

light) is reflected in the growth of the plant. With this in

mind, and the following notation, PPA can be described as

follows.

 A plant pi is in spot Xi in dimension n. This means Xi =

[xi, j], for j = 1, ..., n. In PPA, exploitation is implemented

through sending of many short runners by plants in good

spots. Exploration is implemented by sending few long

runners by plants in poor spots; the long runners allow distant

neighbourhoods to be explored.

 The parameters used in PPA are the population size NP

which is the number of strawberry plants to start with, the

maximum number o generations gmax, and the maximum

number of possible runners nmax per plant. gmax is effectively

the stopping criterion in this initial version of PPA. The

algorithm uses the objective function value at different plant

positions Xi , i = 1, ..., NP to rank them as would a fitness

function in genetic algorithms, [8].

 Let Ni ∈ (0, 1) be the normalised objective function value for

Xi. The number of plant runners, ni for this solution is given

by

where αi ∈ (0, 1) is a randomly generated number. Every

solution generates at least one runner. Each runner generated

has a distance, dxi ∈ [−1, 1]
n
 , calculated by

where r ∈ [0, 1] is also randomly generated. We note that the

number of runners is proportional to the fitness, i.e. the value

of the objective function, whereas the distance is inversely

proportional to it.

 Having calculated the n-dimensional vector dxi , the new point

to explore, Yi = [yi, j], for j = 1, ..., n, is given by

where a j and b j are the lower and upper bounds of the search
domain, respectively. Note that, if the bounds of the search
domain are violated, the point is adjusted to be within the
domain.After all individuals/plants in the population have
sent out their allocated runners, new plants are evaluated and
the whole increased population is sorted. To keep the
population size constant, individuals with lower fitness are
eliminated.

3 MODIFIED PLANT PROPAGATION ALGORITHM
(MPPA)

The modifications with respect to the previous version of PPA

as in Algorithm 2, [18, 21], concern the strategy for

generating runners, whether they should be short or long,

and whether the new points resulting from these runners are

retained or not. Also, while in Algorithm 2 the number of

runners is varying between 1 and nmax , in the modified

version it is assumed to be a fixed number, although all

generated runners may not lead to points that will make it into

the new population. This is because, after sorting, their rank

may be above NP, the population size.

3.1 AN ALTERNATIVE IMPLEMENTATION OF THE
PROPAGATION PHASE

The population is initialized randomly by

where α j ∈ (0, 1) is a randomly generated real number for
each j. After the population is initialized, MPPA proceeds to

generate for every member in the population a number nr of

runners; nr is assumed to be a fixed constant. These runners

lead to new solutions as per the equations (5-7), on the off

chance that the limits of the search area are maltreated, the

coordinates are conformed respectively to be inside the search

space [9].

where β j ∈ [−1, 1] is a randomly generated number for each j.
The term β j · xi, j is the length with respect to the j

j h

coordinate of the runner, and yi, j ∈ [a j , b j]. If the bounds of

the search domain are violated, the point is adjusted to be

within the domain. The generated individual Y is evaluated

according to the objective function and is stored in Φ,

equation (5) helps in exploring the neighbourhood of xi, j . As

the search becomes refined, that is the algorithm is in

exploitation mode then the coordinates produced by equation

 Sci.Int.(Lahore),28(1),201-209,2016 ISSN 1013-5316; CODEN: SINTE 8 203

(5) are smaller and smaller [9]. This is represented in Figure

(2), where the horizontal axis shows the total number of

perturbations produced during 30 independent experiments.

Note that in beginning of each experiment the step size is

larger and as the search is refined the step size decreases

gradually, in the latter case the algorithm is in exploitation

mode. In Algorithm 3, If this newly created solution, by

equation (5), is not improving the objective function, then

another individual is created with a runner based on equation

(6), [9]. The number of runners of a certain length generated

by equation (6), when solving f2 , is shown in Figure (1), this

shows the frequency of exploration for the optimum solution.

where b j is the j
t h

 upper bound and here again yi, j ∈ [a j , b j].
This can be considered as a solution at the end of a long

runner. Again, if the generated individual does not improve

the

objective value, another runner is created by equation (7),

where a j is the j
t h

lower bound and yi, j∈ [a j , b j]. This

can be considered as a solution at the end of a long runner.

The number of runners of a certain length generated by

equation (7), when solving f2 , is shown in Figure (3), this

shows the frequency of exploration for the optimum

solution.

Equations (5-7), are implemented by Algorithm 3 turn by

turn if any of the search equation fails in improving the cur-

rent solution [9]. MPPA improves the balance between

exploration and exploitation of the search space as depicted

in Figures (1-3). Note that the above equations may lead to

infeasibility. In these situations, the offending entry is set

by default to the boundary, lower or upper as per the

concerned equation. To keep the size of the population

constant, the plants with ranks > NP after sorting, are

eliminated.

4. EXPERIMENTAL STUDIES

MPPA has been applied to a set of 18 benchmark functions of
dimensions D = 30, 60 and 100, as shown in Tables 1-3. The

set of experiments are carried out using n * 5000 function

evaluations, where n is the dimension of the given test

problem. The population size is NP = 75, as used in [5]. We

try to match the number of evaluations carried out in tests in

[5]. Note that although MPPA generates more points per

iteration than MABC, it runs for less generations. In this way

the number of function evaluation is kept the same for both

algorithms. One, therefore, can talk of a fair comparison

although some readers may find the concept of "fair

comparison" hard to achieve in empirical studies on

algorithms. The solution quality is listed in terms of best,

worst, median, mean and standard deviation of the objective

values found by each algorithm over 30 independent runs, as

shown in Tables 5-7.

 For functions 1, 2, 3, 5, 7, through 13, 16, and 17, MPPA
found the optimum solutions while MABC did not. For

functions 4 both algorithms found the optimum. For functions

6, 15, and 18 MPPA generated better solutions in terms of

quality than MABC, although these solutions are suboptimal.

Only for function 14 did MPPA generate a solution of lower

quality than that found by MABC.

It is also important to note that MPPA outperformed ABC on
all functions except Function 14, in dimension 30. Note that,

at least for the time being, it is not necessary to compare with

other algorithms such as the Genetic Algorithm (GA) [8, 7],

Particle Swarm Optimization (PSO) [4], Differential

Evolution (DE) [13], Harmony Search algorithm (HS) [6] and

others, since all of these have been outperformed by ABC as

reported in [11, 12]. MPPA is compared to its basic version

PPA, as shown in Table 4, the approximate error in solutions,

points to the superiority of MPPA.

5 CONCLUSION
Optimization problems are becoming more and more complex
and unavoidable in most human activities. Although a variety
of algorithms and heuristics to deal with them have been
developed, new approaches are needed as the size and
complexity of these problems increase. In recent years,
heuristics and in particular those inspired by Nature, are
becoming more efficient and robust. We have designed a
Nature­ inspired algorithm based on the way plants and in
particular the strawberry plant, propagate. The original PPA
algorithm has been only summarily tested on low dimension
problems to establish its credentials. Surprisingly, despite
being very simple and requiring few parameters, it managed to
solve those problems rather well, [18]. In this paper, we have
presented a modified version of PPA, which is referred to as
MPPA. The improvements concern the way new solutions at
the end of runners are calculated, i.e. Equations (5-7). The
resulting algorithm has been tested on a more extensive test
bench with a large number of functions having interesting
characteristics such as multimodality and non separability in
high dimensions, up to a 100. The results show that MPPA
outperforms ABC and its more robust modification MABC on
most of the test functions. In conclusion, MPPA provides us
with a robust, easy to implement method for nonlinear, non-
convex high dimensional optimization problems.

 ACKNOWLEDGMENTS

 This work is supported by Abdul Wali Khan University,

 Mardan, Pakistan, Grant No. F.16-5/ P& D/ AWKUM /238.

204 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(1),201-209,2016

 Sci.Int.(Lahore),28(1),201-209,2016 ISSN 1013-5316; CODEN: SINTE 8 205

206 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(1),201-209,2016

 Sci.Int.(Lahore),28(1),201-209,2016 ISSN 1013-5316; CODEN: SINTE 8 207

208 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(1),201-209,2016

 Sci.Int.(Lahore),28(1),201-209,2016 ISSN 1013-5316; CODEN: SINTE 8 209

REFERENCES

